
Chapter 7

Approximation methods for
stationary states

7.1 Time-independent perturbation theory

While we have succeeded in deriving formal analytical solutions for stationary
states of the Schrödinger operator in a variety of settings, in the majority of
practical applications, exact solutions are inaccessible.1 For example, if an
atom is placed in an external electric field, the energy levels shift, and the
wavefunctions become distorted — the Stark effect. The new energy levels
and wavefunctions could in principle be obtained by writing down a complete
Hamiltonian, including the external field. Indeed, such a programme may
be achieved for the hydrogen atom. But even there, if the external field is
small compared with the electric field inside the atom (which is billions of
volts per meter) it is easier to compute the changes in the energy levels and
wavefunctions within a scheme of successive corrections to the zero-field values.
This method, termed perturbation theory, is the single most important method
for solving problems in quantum mechanics, and is widely used in atomic
physics, condensed matter and particle physics.

! Info. It should be acknowledged that there are – typically very interesting
– problems which cannot be solved using perturbation theory, even when the per-
turbation is very weak; although such problems are the exception rather than the
rule. One such case is the one-dimensional problem of free particles perturbed by
a localized potential of strength λ. As we found earlier in chapter 2, switching on
an arbitrarily weak attractive potential causes the k = 0 free particle wavefunction
to drop below the continuum of plane wave energies and become a localized bound
state with binding energy of order λ2. However, on changing the sign of λ to give a
repulsive potential, there is no bound state; the lowest energy plane wave state stays
at energy zero. Therefore the energy shift on switching on the perturbation cannot
be represented as a power series in λ, the strength of the perturbation. This partic-
ular difficulty does not typically occur in three dimensions, where arbitrarily weak
potentials do not in general lead to bound states.

! Exercise. Focusing on the problem of bound state formation in one-dimension
described above, explore the dependence of the ground state energy on λ. Consider
why a perturbative expansion in λ is infeasible.

1Indeed, even if such a solution is formally accessible, its complexity may render it of no
practical benefit.
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7.1.1 The Perturbation Series

Let us then consider an unperturbed Hamiltonian, Ĥ(0), having known eigen-
states |n(0)〉 and eigenvalues E(0)

n ,

Ĥ(0)|n(0)〉 = E(0)
n |n(0)〉 . (7.1)

In the following we will address the question of how the eigenstates and
eigenenergies are modified by the imposition of a small perturbation, Ĥ(1)

(such as that imposed by an external electric or magnetic field on a charged
particle, or the deformation of some other external potential). In short, we
are interested in the solution of the Schrödinger equation,

(Ĥ(0) + Ĥ(1))|n〉 = En|n〉 . (7.2)

If the perturbation is small, 〈n(0)|Ĥ(1)|n(0)〉 # E(0)
n , it seems natural to

suppose that, on turning on Ĥ(1), the eigenfunctions and eigenvalues will
change adiabatically from their unperturbed to their perturbed values, a sit-
uation described formally as “adiabatic continuity”,

|n(0)〉 $−→ |n〉, E(0)
n $−→ En .

However, note that this is not always the case. For example, as mentioned
above, an infinitesimal perturbation has the capacity to develop a bound state
not present in the unperturbed system. For now, let us proceed with the per-
turbative expansion and return later to discuss its potential range of validity.

The basic assumption that underpins the perturbation theory is that, for
Ĥ(1) small, the leading corrections are of the same order of magnitude as
Ĥ(1) itself. The perturbed eigenenergies and eigenvalues can then be ob-
tained to a greater accuracy by a successive series of corrections, each of order
〈Ĥ(1)〉/〈Ĥ(0)〉 compared with the previous. To identify terms of the same
order in 〈Ĥ(1)〉/〈Ĥ(0)〉, it is convenient to extract from Ĥ(1) a dimensionless
parameter λ, characterising the relative magnitude of the perturbation against
Ĥ(0), and then expand |n〉 and En as a power series in λ, i.e.

|n〉 = |n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ · · · =
∞∑

m=0

λm|n(m)〉,

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · · =

∞∑

m=0

λmE(m)
n .

One may think of the parameter λ as an artifical book-keeping device to or-
ganize the perturbative expansion, and which is eventually set to unity at the
end of the calculation.

Applied to the stationary form of the Schrödinger equation (7.2), an ex-
pansion of this sort leads to the relation

(Ĥ(0) + λĤ(1))(|n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ · · ·)
= (E(0)

n + λE(1)
n + λ2E(2)

n + · · ·)(|n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ · · ·) .(7.3)

From this equation, we must relate terms of equal order in λ. At the lowest
order, O(λ0), we simply recover the unperturbed equation (7.1). In practical
applications, one is usually interested in determining the first non-zero per-
turbative correction. In the following, we will explore the form of the first and
second order perturbative corrections.
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7.1.2 First order perturbation theory

Isolating terms from (7.3) which are first order in λ,

Ĥ(0)|n(1)〉+ Ĥ(1)|n(0)〉 = E(0)
n |n(1)〉+ E(1)

n |n(0)〉 . (7.4)

and taking the inner product with the unperturbed states 〈n(0)|, one obtains

〈n(0)|Ĥ(0)|n(1)〉+ 〈n(0)|Ĥ(1)|n(0)〉 = 〈n(0)|E(0)
n |n(1)〉+ 〈n(0)|E(1)

n |n(0)〉 .

Noting that 〈n(0)|Ĥ(0) = 〈n(0)|E(0)
n , and exploiting the presumed normaliza-

tion 〈n(0)|n(0)〉 = 1, one finds that the first order shift in energy is given
simply by the expectation value of the perturbation taken with respect to the
unperturbed eigenfunctions,

E(1)
n = 〈n(0)|Ĥ(1)|n(0)〉 . (7.5)

Turning to the wavefuntion, if we instead take the inner product of (7.4)
with 〈m(0)| (with m '= n), we obtain

〈m(0)|Ĥ(0)|n(1)〉+ 〈m(0)|Ĥ(1)|n(0)〉 = 〈m(0)|E(0)
n |n(1)〉+ 〈m(0)|E(1)

n |n(0)〉 .

Once again, with 〈m(0)|Ĥ(0) = 〈m(0)|E(0)
m and the orthogonality condition on

the wavefunctions, 〈m(0)|n(0)〉 = 0, one obtains an expression for the first order
shift of the wavefunction expressed in the unperturbed basis,

〈m(0)|n(1)〉 =
〈m(0)|Ĥ(1)|n(0)〉

E(0)
n − E(0)

m

. (7.6)

In summary, setting λ = 1, to first order in perturbation theory, we have
the eigenvalues and eigenfunctions,

En ( E(0)
n + 〈n(0)|Ĥ(1)|n(0)〉

|n〉 ( |n(0)〉+
∑

m"=n

|m(0)〉〈m
(0)|Ĥ(1)|n(0)〉
E(0)

n − E(0)
m

.

Before turning to the second order of perturbation theory, let us first consider
a simple application of the method.

! Example: Ground state energy of the Helium atom: For the Helium
atom, two electrons are bound to a nucleus of two protons and two neutrons. If
one neglects altogether the Coulomb interaction between the electrons, in the ground
state, both electrons would occupy the ground state hydrogenic wavefunction (scaled
appropriately to accommodate the doubling of the nuclear charge) and have opposite
spin. Treating the Coulomb interaction between electrons as a perturbation, one may
then use the basis above to estimate the shift in the ground state energy with

Ĥ(1) =
1

4πε0

e2

|r1 − r2|
.

As we have seen, the hydrogenic wave functions are specified by three quantum
numbers, n, %, and m. In the ground state, the corresponding wavefunction takes the
spatially isotropic form,

〈r|n = 1, % = 0, m = 0〉 = ψ100(r) =
(

1
πa3

)1/2

e−r/a , (7.7)
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where a = 4πε0
Ze2

!2

me
= a0

Z denotes the atomic Bohr radius for a nuclear charge Z.
For the Helium atom (Z = 2), the symmetrized ground state of the unperturbed
Hamiltonian is then given by the spin singlet (S = 0) electron wavefunction,

|g.s.(0)〉 =
1√
2

(|100, ↑〉 ⊗ |100, ↓〉 − |100, ↓〉 ⊗ |100, ↑〉) .

Here we have used the direct product ⊗ to discriminate between the two electrons.
Then, applying the perturbation theory formula above (7.5), to first order in the
Coulomb interaction, the energy shift is given by

E(1)
n = 〈g.s.(0)|Ĥ(1)|g.s.(0)〉 =

e2

4πε0

1
(πa3)2

∫
dr1dr2

e−2(r1+r2)/a

|r1 − r2|
=

e2

4πε0

C0

2a
,

where we have defined the dimensionless constant C0 = 1
(4π)2

∫
dz1dz1

e−(z1+z2)

|z1−z2| . Then,
making use of the identity,

1
(4π)2

∫
dΩ1dΩ2

1
|z1 − z2|

=
1

max(z1, z2)
,

where the integrations runs over the angular coordinates of the vectors z1 and z2,
and z1,2 = |z1,2|, one finds that C0 = 2

∫∞
0 dz1z2

1e−z1
∫∞

z1
dz2z2e−z2 = 5/4. As a

result, noting that the Rydberg energy, Ry = e2

4πε0
1

2a0
, we obtain the first order

energy shift ∆E = 5
4ZRy ( 34eV for Z = 2. This leads to a total ground state

energy of (2Z2 − 5
4Z) Ry = −5.5Ry ( −74.8eV compared to the experimental value

of −5.807Ry.

7.1.3 Second order perturbation theory

With the first order of perturbation theory in place, we now turn to consider
the influence of the second order terms in the perturbative expansion (7.3).
Isolating terms of order λ2, we have

Ĥ(0)|n(2)〉+ Ĥ(1)|n(1)〉 = E(0)
n |n(2)〉+ E(1)

n |n(1)〉+ E(2)
n |n(0)〉 .

As before, taking the inner product with 〈n(0)|, one obtains

〈n(0)|Ĥ(0)|n(2)〉+ 〈n(0)|Ĥ(1)|n(1)〉
= 〈n(0)|E(0)

n |n(2)〉+ 〈n(0)|E(1)
n |n(1)〉+ 〈n(0)|E(2)

n |n(0)〉 .

Noting that the first two terms on the left and right hand sides cancel, we are
left with the result

E(2)
n = 〈n(0)|Ĥ(1)|n(1)〉 − E(1)

n 〈n(0)|n(1)〉 .

Previously, we have made use of the normalization of the basis states,
|n(0)〉. We have said nothing so far about the normalization of the exact
eigenstates, |n〉. Of course, eventually, we would like to ensure normalization
of these states too. However, to facilitate the perturbative expansion, it is
operationally more convenient to impose a normalization on |n〉 through the
condition 〈n(0)|n〉 = 1. Substituting the λ expansion for |n〉, we thus have

〈n(0)|n〉 = 1 = 〈n(0)|n(0)〉+ λ〈n(0)|n(1)〉+ λ2〈n(0)|n(2)〉+ · · · .

From this relation, it follows that 〈n(0)|n(1)〉 = 〈n(0)|n(2)〉 = · · · = 0.2 We can
therefore drop the term E(1)

n 〈n(0)|n(1)〉 from consideration. As a result, we
2Alternatively, would we suppose that |n〉 and |n(0)〉 were both normalised to unity,

to leading order, |n〉 = |n(0)〉 + |n(1)〉, and 〈n(0)|n(1)〉 + 〈n(1)|n(0)〉 = 0, i.e. 〈n(0)|n(1)〉
is pure imaginary. This means that if, to first order, |n〉 has a component parallel to
|n(0)〉, that component has a small imaginary amplitude allowing us to define |n〉 =
eiφ|n(0)〉+orthog. components. However, the corresponding phase factor φ can be eliminated

by redefining the phase of |n〉. Once again, we can conclude that the term E(1)
n 〈n(0)|n(1)〉

can be eliminated from consideration.
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obtain

E(2)
n = 〈n(0)|Ĥ(1)|n(1)〉 = 〈n(0)|Ĥ(1)

∑

m"=n

|m(0)〉〈m
(0)|Ĥ(1)|n(0)〉
E(0)

n − E(0)
m

,

i.e.

E(2)
n =

∑

m"=n

|〈m(0)|Ĥ(1)|n(0)〉|2

E(0)
n − E(0)

m

. (7.8)

From this result, we can conclude that,

! for the ground state, the second order shift in energy is always negative;

! if the matrix elements of Ĥ(1) are of comparable magnitude, neighbour-
ing levels make a larger contribution than distant levels;

! Levels that lie in close proximity tend to be repelled;

! If a fraction of the states belong to a continuum, the sum in Eq. (7.8)
should be replaced by an intergral.

Once again, to illustrate the utility of the perturbative expansion, let us con-
sider a concrete physical example.

! Example: The Quadratic Stark Effect: Consider the influence of an exter-
nal electric field on the ground state of the hydrogen atom. As the composite electron
and proton are drawn in different directions by the field, the relative displacement
of the electon cloud and nucleus results in the formation of a dipole which serves to
lower the overall energy. In this case, the perturbation due to the external field takes
the form

Ĥ(1) = qEz = qEr cos θ ,

where q = −|e| denotes the electron charge, and the electric field, E = Eêz is oriented
along the z-axis. With the non-perturbed energy spectrum given by E(0)

n#m ≡ E(0)
n =

−Ry/n2, the ground state energy is given by E(0) ≡ E(0)
100 = −Ry. At first order

in the electric field strength, E, the shift in the ground state energy is given by
E(1) = 〈100|qEz|100〉 where the ground state wavefunction was defined above (7.7).
Since the potential perturbation is antisymmetric in z, it is easy to see that the energy
shift vanishes at this order.

We are therefore led to consider the contribution second order in the field strength.
Making use of Eq. (7.8), and neglecting the contribution to the energy shift from the
continuum of unbound positive energy states, we have

E(2) =
∑

n #=1,#,m

|〈n%m|eEz|100〉|2

E(0)
1 − E(0)

n

,

where |n%m〉 denote the set of bound state hydrogenic wavefunctions. Although the
expression for E(2) can be computed exactly, the programme is somewhat tedious.
However, we can place a strong bound on the energy shift through the following
argument: Since, for n > 2, |E(0)

1 − E(0)
n | > |E(0)

1 − E(0)
2 |, we have

|E(2)| <
1

E(0)
2 − E(0)

1

∑

n #=1,#,m

〈100|eEz|n%m〉〈n%m|eEz|100〉 .

Since
∑

n,#,m |n%m〉〈n%m| = I, we have
∑

n #=1,#,m |n%m〉〈n%m| = I−|100〉〈100|. Finally,
since 〈100|z|100〉 = 0, we can conclude that |E(2)| < 1

E(0)
2 −E(0)

1
〈100|(eEz)2|100〉. With

〈100|z2|100〉 = a2
0, E(0)

1 = − e2

4πε0
1

2a0
= −Ry, and E(0)

2 = E(0)
1 /4, we have

|E(2)| <
1

3
4e2/8πε0a0

(eE)2a2
0 =

8
3
4πε0E

2a3
0 .
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Furthermore, since all terms in the perturbation series for E(2) are negative, the first
term in the series sets a lower bound, |E(2)| > |〈210|eEz|100〉|2

E(0)
2 −E(0)

1
. From this result, one

can show that 0.55× 8
34πε0E2a3

0 < |E(2)| < 8
34πε0E2a3

0 (exercise).3

7.2 Degenerate perturbation theory

The perturbative analysis above is reliable providing that the successive terms
in the expansion form a convergent series. A necessary condition is that the
matrix elements of the perturbing Hamiltonian must be smaller than the cor-
responding energy level differences of the original Hamiltonian. If it has dif-
ferent states with the same energy (i.e. degeneracies), and the perturbation
has non-zero matrix elements between these degenerate levels, then obviously
the theory breaks down. However, the problem is easily fixed. To understand
how, let us consider a particular example.

Recall that, for the simple harmonic oscillator, Ĥ = p̂2

2m + 1
2mω2x2, the

ground state wavefunction is given by 〈x|0〉 = (mω
π! )1/4e−ξ2/2, where ξ =

x
√

mω/! and the first excited state by 〈x|1〉 = (4mω
π! )1/4ξe−ξ2/2. The wave-

functions for the two-dimensional harmonic oscillator,

Ĥ(0) =
1

2m
(p̂2

x + p̂2
y) +

1
2
mω2(x2 + y2) .

are given simply by the product of two one-dimensional oscillators. So, setting
η = y

√
mω/!, the ground state is given by 〈x, y|0, 0〉 =

(
mω
π!

)1/2
e−(ξ2+η2)/2,

and the two degenerate first excited states, an energy !ω above the ground
state, are given by,

{
〈x, y|1, 0〉
〈x, y|0, 1〉 =

(mω

π!

)1/2
e−(ξ2+η2)/2

{
ξ
η

.

Suppose now we add to the Hamiltonian a perturbation,

Ĥ(1) = αmω2xy = α!ωξη ,

controlled by a small parameter α. Notice that, by symmetry, the following
matrix elements all vanish, 〈0, 0|Ĥ(1)|0, 0〉 = 〈1, 0|Ĥ(1)|1, 0〉 = 〈0, 1|Ĥ(1)|0, 1〉 =
0. Therefore, according to a näıve perturbation theory, there is no first-order
correction to the energies of these states. However, on proceeding to consider
the second-order correction to the energy, the theory breaks down. The off-
diagonal matrix element, 〈1, 0|Ĥ(1)|0, 1〉 = 0 is non-zero, but the two states
|0, 1〉 and |1, 0〉 have the same energy! This gives an infinite term in the series
for E(2)

n=1.
Yet we know that a small perturbation of this type will not wreck a two-

dimensional simple harmonic oscillator – so what is wrong with our approach?
To understand the origin of the problem and its fix, it is helpful to plot the
original harmonic oscillator potential 1

2mω2(x2 + y2) together with the per-
turbing potential αmω2xy. The first of course has circular symmetry, the
second has two symmetry axes oriented in the directions x = ±y, climbing
most steeply from the origin along x = y, falling most rapidly in the directions
x = y. If we combine the two potentials into a single quadratic form,

1
2
mω2(x2 + y2) + αmω2xy =

1
2
mω2

[
(1 + α)

(
x + y√

2

)2

+ (1− α)
(

x− y√
2

)2
]

.

3Energetic readers might like to contemplate how the exact answer of |E(2)| = 9
4E2a3

0 can
be found exactly. The method can be found in the text by Shankar.
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the original circles of constant potential become ellipses, with their axes aligned
along x = ±y.

As soon as the perturbation is introduced, the eigenstates lie in the direc-
tion of the new elliptic axes. This is a large change from the original x and
y bases, which is not proportional to the small parameter α. But the origi-
nal unperturbed problem had circular symmetry, and there was no particular
reason to choose the x and y axes as we did. If we had instead chosen as
our original axes the lines x = ±y, the basis states would not have undergone
large changes on switching on the perturbation. The resolution of the problem
is now clear: Before switching on the perturbation, one must choose a set of
basis states in a degenerate subspace in which the perturbation is diagonal.

In fact, for the simple harmonic oscillator example above, the problem can
of course be solved exactly by rearranging the coordinates to lie along the
symmetry axes, (x ± y)/

√
2. It is then clear that, despite the results of näıve

first order perturbation theory, there is indeed a first order shift in the energy
levels, !ω → !ω

√
1 ± α ≈ !ω(1 ± α/2).

! Example: Linear Stark Effect: As with the two-dimensional harmonic
oscillator discussed above, the hydrogen atom has a non-degenerate ground state, but
degeneracy in its lowest excited states. Specifically, there are four n = 2 states, all
having energy − 1

4Ry. In spherical coordinates, these wavefunctions are given by






ψ200(r)
ψ210(r)
ψ21,±1(r)

=
(

1
32πa3

0

)1/2

e−r/2a0






(
2− r

a0

)

r
a0

cos θ
r
a0

e±iφ sin θ

.

When perturbing this system with an electric field oriented in the z-direction, Ĥ(1) =
qEr cos θ, a näıve application of perturbation theory predicts no first-order shift in
any of these energy levels. However, at second order in E, there is a non-zero matrix
element between two degenerate levels ∆ = 〈200|Ĥ(1)|210〉. All the other matrix
elements between these basis states in the four-dimensional degenerate subspace are
zero. So the only diagonalization necessary is within the two-dimensional degenerate
subspace spanned by |200〉 and |210〉, i.e.

Ĥ(1) =
(

0 ∆
∆ 0

)
,

with ∆ = qE
(

1
32πa3

0

) ∫ (
2− r

a0

) (
r cos θ

a0

)2
e−r/a0r2dr sin θ dθ dφ = −3qEa0.

Diagonalizing Ĥ(1) within this sub-space, the new basis states are given by the
symmetric and antisymmetric combinations, (|200〉 ±| 210〉)/

√
2 with energy shifts

±∆, linear in the perturbing electric field. The states |2%,±1〉 are not changed by
the presence of the field to this level of approximation, so the complete energy map
of the n = 2 states in the electric field has two states at the original energy of −Ry/4,
one state moved up from that energy by ∆, and one down by ∆. Notice that the new
eigenstates (|200〉 ±| 210〉)/

√
2 are not eigenstates of the parity operator -- a sketch

of their wavefunctions reveals that, in fact, they have non-vanishing electric dipole
moment µ. Indeed this is the reason for the energy shift, ±∆ = ∓2eEa0 = ∓µ · E.

! Example: As a second and important example of the degenerate perturbation
theory, let us consider the problem of a particle moving in one dimension and subject
to a weak periodic potential, V (x) = 2V cos(2πx/a) – the nearly free electron
model. This problem provides a caricature of a simple crystalline solid in which
(free) conduction electrons propagate in the presence of a periodic background lattice
potential. Here we suppose that the strength of the potential V is small as compared
to the typical energy scale of the particle so that it may be treated as a small pertur-
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bation. In the following, we will suppose that the total one-dimensional system is of
length L = Na, with periodic boundary conditions.

For the unperturbed free particle system, the eigenstates are simply plane waves
ψk(x) = 〈x|k〉 = 1√

L
eikx indexed by the wavenumber k = 2πn/L, n integer, and

the unperturbed spectrum is given by E(0)
k = !2k2/2m. The matrix elements of the

perturbation between states of different wavevector are given by

〈k|V |k′〉 =
1
L

∫ L

0
dxei(k′−k)x2V cos(2πx/a)

=
V

L

∫ L

0

(
ei(k′−k+2π/a)x + ei(k′−k−2π/a)x

)
= V δk′−k,±2π/a .

Note that all diagonal matrix elements of the perturbation are identically zero. In
general, for wavevectors k and k′ separated by G = 2π/a, the unperturbed states are
non-degenerate. For these states one can compute the relative energy shift within
the framework of second order perturbation theory. However, for states k = −k′ =
G/2 ≡ π/a, the unperturbed free particle spectrum is degenerate. Here, and in
the neighbourhood of these k values, we must implement a degenerate perturbation
theory.

For the sinusoidal potential considered here, only states separated by G = 2π/a
are coupled by the perturbation. We may therefore consider matrix elements of the
full Hamiltonian between pairs of coupled states, |k = G/2 + q〉 and |k = −G/2 + q〉

H =

(
E(0)

G/2+q V

V E(0)
−G/2+q

)
.

As a result, to leading order in V , we obtain the eigenvalues,

Eq =
!2

2m
(q2 + (π/a)2) ±

(
V 2 +

π2!4q2

4m2a2

)1/2

.

In particular, this result shows that, for k = ±G/2, the degeneracy of the free particle
system is lifted by the potential. In the vicinity, |q| # G, the spectrum of eigenvalues
is separated by a gap of size 2V . The appearance of the gap mirrors the behaviour
found in our study of the Kronig-Penney model of a crystal studied in section 2.2.3.

The appearance of the gap has important consequences in theory of solids. Elec-
trons are fermions and have to obey Pauli’s exclusion principle. In a metal, at low
temperatures, electrons occupy the free particle-like states up to some (Fermi) energy
which lies away from gap. Here, the accessibility of very low-energy excitations due
to the continuum of nearby states allows current to flow when a small electric field is
applied. However, when the Fermi energy lies in the gap created by the lattice po-
tential, an electric field is unable to create excitations and induce current flow. Such
systems are described as (band) insulators.

7.3 Variational method

So far, in devising approximation methods for quantum mechanics, we have
focused on the development of a perturbative expansion scheme in which the
states of the non-perturbed system provided a suitable platform. Here, by
suitable, we refer to situations in which the states of the unperturbed system
mirror those of the full system – adiabatic contunity. For example, the states
of the harmonic oscillator potential with a small perturbation will mirror those
of the unperturbed Hamiltonian: The ground state will be nodeless, the first
excited state will be antisymmetric having one node, and so on. However, often
we working with systems where the true eigenstates of the problem may not
be adiabatically connected to some simple unperturbed reference state. This
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situation is particularly significant in strongly interacting quantum systems
where many-particle correlations can effect phase transitions to new states
of matter – e.g. the development of superfluid condensates, or the fractional
quantum Hall fluid. To address such systems if it is often extremely effective to
“guess” and then optimize a trial wavefunction. The method of optimization
relies upon a simple theoretical framework known as the variational approach.
For reasons that will become clear, the variational method is particularly well-
suited to addressing the ground state.

The variational method involves the optimization of some trial wavefunc-
tion on the basis of one or more adjustable parameters. The optimization
is achieved by minimizing the expectation value of the energy on the trial
function, and thereby finding the best approximation to the true ground state
wave function. This seemingly crude approach can, in fact, give a surprisingly
good approximation to the ground state energy but, it is usually not so good
for the wavefunction, as will become clear. However, as mentioned above,
the real strength of the variational method arises in the study of many-body
quantum systems, where states are more strongly constrained by fundamental
symmetries such as “exclusion statistics”.

To develop the method, we’ll begin with the problem of a single quantum
particle confined to a potential, Ĥ = p̂2

2m +V (r). If the particle is restricted to
one dimension, and we’re looking for the ground state in any fairly localized
potential well, it makes sense to start with a trial wavefunction which belongs
to the family of normalized Gaussians, |ψ(α)〉 = (α/π)1/4e−αx2/2. Such a trial
state fulfils the criterion of being nodeless, and is exponentially localized to
the region of the binding potential. It also has the feature that it includes the
exact ground states of the harmonic binding potential.

The variation approach involves simply minimizing the expectaton value of
the energy, E = 〈ψ(α)|Ĥ|ψ(α)〉, with respect to variations of the variational
parameter, α. (Of course, as with any minimization, one must check that the
variation does not lead to a maximum of the energy!) Not surprisingly, this
programme leads to the exact ground state for the simple harmonic oscillator
potential, while it serves only as an approximation for other potentials. What
is perhaps surprising is that the result is only off by only ca. 30% or so
for the attractive δ-function potential, even though the wavefunction looks
substantially different. Obviously, the Gaussian family cannot be used if there
is an infinite wall anywhere: one must find a family of wavefunctions vanishing
at such a boundary.

! Exercise. Using the Gaussian trial state, find the optimal value of the varia-
tional state energy, E, for an attractive δ-function potential and compare it with the
exact result.

To gain some further insight into the approach, suppose the Hamiltonian
Ĥ has a set of eigenstates, Ĥ|n〉 = En|n〉. Since the Hamiltonian is Her-
mitian, these states span the space of possible wave functions, including our
variational family of Gaussians, so we can write, |ψ(α)〉 =

∑
n an(α)|n〉. From

this expansion, we have

〈ψ(α)|Ĥ|ψ(α)〉
〈ψ(α)|ψ(α)〉 =

∑

n

|an|2En ≥ E0 ,

for any |ψ(α)〉. (We don’t need the denominator if we’ve chosen a family of
normalized wavefunctions, as we did with the Gaussians above.) Evidently,
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minimizing the left hand side of this equation as function of α provides an
upper bound on the ground state energy.

We can see immediately that this will probably be better for finding the
ground state energy than for the wavefunction: Suppose the optimum state in
our family is given by, say, |αmin〉 = N(|0〉+0.2|1〉) with the normalization N (
0.98, i.e. a 20% admixture of the first excited state. Then the wavefunction is
off by ca. 20%, but the energy estimate will be too high by only 0.04(E1−E0),
usually a much smaller error.

! Example: To get some idea of of how well the variational approach works,
consider its application to the to the ground state of the hydrogen atom. Taking
into account the spherical symmetry of the ground state, we may focus on the one-
dimensional radial component of the wavefunction. Defining the trial radial wave-
function u(ρ) (presumed real), where ρ = r/a0, the variational energy is given by

E(u) = −Ry

∫∞
0 dρ u(ρ)

(
d2

dρ2 + 2
ρ

)
u(ρ)

∫∞
0 dρ u2(ρ)

.

For the three families of trial functions,

u1(ρ) = ρe−αρ, u2(ρ) =
ρ

α2 + ρ2
, u3(ρ) = ρ2e−αρ,

and finds αmin = 1, π/4, and 3/2 respectively (exercise). The first family, u1, in-
cludes the exact result, and the minimization procedure correctly finds it. For the
three families, the predicted energy of the optimal state is off by 0, 25%, and 21%
respectively.

The corresponding error in the wavefunction is defined by how far the square of
the overlap with the true ground state wavefunction falls short of unity. For the three
families, ε = 1 − |〈ψ0|ψvar|2 = 0, 0.21, and 0.05. Notice here that our handwaving
argument that the energies would be found much more accurately than the wavefunc-
tions seems to come unstuck. The third family has far better wavefunction overlap
than the second, but only a slightly better energy estimate. Why? A key point is
that the potential is singular at the origin; there is a big contribution to the potential
energy from a rather small region, and the third family of trial states is the least
accurate of the three there. The second family of functions are very inaccurate at
large distances: the expectation value 〈r〉 = 1.5a0, ∞, 1.66a0 for the three families.
But at large distances, both kinetic and potential energies are small, so the result can
still look reasonable. These examples reinforce the point that the variational method
should be implemented with some caution.

In some cases, one can exploit symmetry to address the properties of
higher-lying states. For example, if the one-dimensional attractive potential is
symmetric about the origin, and has more than one bound state, the ground
state will be even, the first excited state odd. Therefore, we can estimate the
energy of the first excited state by minimizing a family of odd functions, such
as ψ(x, α) = (

√
π

2α3/2 )1/2xe−αx2/2.

! Example: Helium atom addressed by the variational approach: For
the hydrogen atom, we know that the ground state energy is 1Ry, or 13.6 eV. The
He+ ion (with just a single electron) has a nuclear charge of Z = 2, so the ground
state energy of the electron, being proportional to Z2, will now be equal to 4Ry.
Therefore, for the He atom, if we neglect their mutual interaction, the electrons will
occupy the ground state wavefunction having opposite spin, leading to a total ground
state energy of 8 Ry or 109 eV. In practice, as we have seen earlier, the repulsion
between the electrons lowers ground state energy to 79 eV (see page 64).

To get a better estimate for the ground state energy, one can retain the form of
the ionic wavefunction, ( Z3

πa3
0
)1/2e−Zr/a0 , but rather than setting the nuclear charge
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Z = 2, leave it as a variational parameter. In other words, let us accommodate the
effects of electron-electron repulsion, which must “push” the wavefunctions to larger
radii, by keeping exactly the same wavefunction profile but lessening the effective
nuclear charge as reflected in the spread of the wavefunction from Z = 2 to Z < 2.
The precise value will be set by varying it to find the minimum total energy, including
the term from electron-electron repulsion.

To find the potential energy from the nuclear-electron interactions, we of course
must use the actual nuclear charge Z = 2, but impose a variable Z for the wavefunc-
tion, so the nuclear potential energy for the two electrons is given by,

p.e. = −2× 2e2

4πε0

∫ ∞

0
4πr2dr

Z3

πa3
0

e−2Zr/a0

r
= −Z

e2

πε0a0
= −8Z Ry.

This could have been inferred from the formula for the one electron ion, where the
potential energy for the one electron is −2Z2 Ry, one factor of Z being from the
nuclear charge, the other from the consequent shrinking of the orbit. The kinetic
energy is even easier to determine: it depends entirely on the form of the wavefunction,
and not on the actual nuclear charge. So for our trial wavefunction it has to be Z2 Ry
per electron. Finally, making use of our calculation on page 64, we can immediately
write down the positive contribution to the energy expectation value from the electron-
electron interaction,

e2

4πε0

Z3

(πa3
0)2

∫
dr1dr2

e−2Z(r1+r2)/a0

|r1 − r2|
=

5
4

e2

4πε0

Z

2a0
=

5
4
Z Ry .

Léon Nicolas Brillouin 1889-
1969
A French physi-
cis, his father,
Marcel Brillouin,
grandfather,
Éleuthère Mas-
cart, and great-
grandfather,
Charles Briot,
were physicists
as well. He made
contributions to quantum mechanics,
radio wave propagation in the
atmosphere, solid state physics, and
information theory.

Collecting all of the terms, the total variational state energy is given by:

E = −2
(

4Z − Z2 − 5
8
Z

)
Ry .

Minimization of this energy with respect to Z obtains the minimum at Z = 2 − 5
16 ,

leading to an energy of 77.5 eV. This result departs from the true value by about 1 eV.
So, indeed, the presence of the other electron leads effectively to a shielding of the
nuclear charge by an amount of ca. (5/16)e.

This completes our discussion of the principles of the variational approach.
However, later in the course, we will find the variational methods appearing in
several important applications. Finally, to close this section on approximation
methods for stationary states, we turn now to consider a framework which
makes explicit the connection between the quantum and classical theory in
the limit ! → 0.

Hendrik Anthony “Hans”
Kramers 1894-1952
A Dutch
physicist who
conducted early
and important
work in quantum
theory and
electromagnetic
dispersion rela-
tions, solid-state
physics, and
statistical mechanics. He was a
long-time assistant and friend to
Niels Bohr, and collaborated with
him on a 1924 paper contending
that light consists of probability
waves, which became a foundation of
quantum mechanics. He introduced
the idea of renormalization, a cor-
nerstone of modern field theory, and
determined the dispersion formulae
that led to Werner Heisenberg’s
matrix mechanics. He is not as well
known as some of his contemporaries
(primarily because his work was not
widely translated into English), but
his name is still invoked by physicists
as they discuss Kramers dispersion
theory, Kramers-Heisenberg dis-
persion formulae, Kramers opacity
formula, Kramers degeneracy, or
Kramers-Kronig relations.

7.4 Wentzel, Kramers and Brillouin (WKB) method

The WKB (or Wentzel, Kramers and Brillouin) approximation describes a
“quasi-classical” method for solving the one-dimensional time-independent
Schrödinger equation. Note that the consideration of one-dimensional systems
is less restrictive that it may sound as many symmetrical higher-dimensional
problems are rendered effectively one-dimensional (e.g. the radial equation for
the hydrogen atom). The WKB method is named after physicists Wentzel,
Kramers and Brillouin, who all developed the approach independently in
1926.4 Earlier, in 1923, the mathematician Harold Jeffreys had developed
a general method of approximating the general class of linear, second-order

4L. Brillouin, (1926). “La mcanique ondulatoire de Schrödinger: une mt́hode générale
de resolution par approximations successives”, Comptes Rendus de l’Academie des Sciences
183: 2426; H. A. Kramers, (1926). “Wellenmechanik und halbzählige Quantisierung”, Z.
Phys. 39: 828840; G. Wentzel (1926). “Eine Verallgemeinerung der Quantenbedingungen
für die Zwecke der Wellenmechanik”. Z. Phys. 38: 518529.
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differential equations, which of course includes the Schrödinger equation.5 But
since the Schrödinger equation was developed two years later, and Wentzel,
Kramers, and Brillouin were apparently unaware of this earlier work, the con-
tribution of Jeffreys is often neglected.

The WKB method is important both as a practical means of approximat-
ing solutions to the Schrödinger equation, and also as a conceptual framework
for understanding the classical limit of quantum mechanics. The WKB ap-
proximation is valid whenever the wavelength, λ, is small in comparison to
other relevant length scales in the problem. This condition is not restricted
to quantum mechanics, but rather can be applied to any wave-like system
(such as fluids, electromagnetic waves, etc.), where it leads to approximation
schemes which are mathematically very similar to the WKB method in quan-
tum mechanics. For example, in optics the approach is called the eikonal
method, and in general the method is referred to as short wavelength
asymptotics. Whatever the name, the method is an old one, which predates
quantum mechanics – indeed, it was apparently first used by Liouville and
Green in the first half of the nineteenth century. In quantum mechanics, λ is
interpreted as the de Broglie wavelength, and L is normally the length scale of
the potential. Thus, the WKB method is valid if the wavefunction oscillates
many times before the potential energy changes significantly.

7.4.1 Semi-classical approximation to leading order

Consider then the propagation of a quantum particle in a slowly-varying one-
dimensional potential, V (x). Here, by “slowly-varying” we mean that, in any
small region the wavefunction is well-approximated by a plane wave, and that
the wavelength only changes over distances that are long compared with the
local value of the wavelength. We’re also assuming for the moment that the
particle has positive kinetic energy in the region. Under these conditions, we
can anticipate that the solution to the time-independent Schrödinger equation

− !2

2m
∂2

xψ(x) + V (x)ψ(x) = Eψ(x) ,

will take the form A(x)e±ip(x)x/! where p(x) is the “local” value of the momen-
tum set by the classical value, p2/2m+V (x) = E, and the amplitude, A(x), is
slowly-varying compared with the phase factor. Clearly this is a semi-classical
limit: ! has to be sufficiently small that there are many oscillations in the typ-
ical distance over which the potential varies.6

To develop this idea a little more rigorously, and to emphasize the rapid
phase variation in the semi-classical limit, we can parameterize the wavefunc-
tion as

ψ(x) = eiσ(x)/! .

5H. Jeffreys, (1924). “On certain approximate solutions of linear differential equations of
the second order”, Proc. Lon. Math. Soc. 23: 428436.

6To avoid any point of confusion, it is of course true that ! is a fundamental constant – not
easily adjusted! So what do we mean when we say that the semi-classical limit translates to
! → 0? The validity of the semi-classical approximation relies upon λ/L $ 1. Following the
de Broglie relation, we may write this inequality as h/pL $ 1, where p denotes the particle
momentum. Now, in this correspondence, both p and L can be considered as “classical”
scales. So, formally, we can think of think of accessing the semi-classical limit by adjusting
! so that it is small enough to fulfil this inequality. Alternatively, at fixed !, we can access
the semi-classical regime by reaching to higher and higher energy scales (larger and larger
p) so that the inequality becomes valid.
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Here the complex function σ(x) encompasses both the amplitude and phase.
Then, with −!2∂2

xψ(x) = −i!eiσ(x)/!∂2
xσ(x) + eiσ(x)/!(∂xσ)2, the Schrödinger

equation may be rewritten in terms of the phase function as,

−i!∂2
xσ(x) + (∂xσ)2 = p2(x) . (7.9)

Now, since we’re assuming the system is semi-classical, it makes sense to
expand σ(x) as a power series in ! setting,

σ = σ0 + (!/i)σ1 + (!/i)2σ2 + · · · .

At the leading (zeroth) order of the expansion, we can drop the first term
in (7.9), leading to (∂xσ0)2 = p2(x). Fixing the sign of p(x) by p(x) =
+

√
2m(E − V (x)), we conclude that

σ0(x) = ±
∫

p(x)dx .

For free particle systems – those for which the kinetic energy is proportional
to p2 – this expression coincides with the classical action.

From the form of the Schrödinger equation (7.9), it is evident that this ap-
proximate solution is only valid if we can ignore the first term. More precisely,
we must have

∣∣∣∣
!∂2

xσ(x)
(∂xσ(x))2

∣∣∣∣ ≡ |∂x(!/∂xσ)| # 1 .

But, in the leading approximation, ∂xσ ( p(x) and p(x) = 2π!/λ(x), so the
condition translates to the relation

1
2π

|∂xλ(x)| # 1 .

This means that the change in wavelength over a distance of one wavelength
must be small. Obviously, this condition can not always be met: In partic-
ular, if the particle is confined by an attractive potential, at the edge of the
classically allowed region, where E = V (x), p(x) must is zero and the corre-
sponding wavelength infinite. The approximation is only valid well away from
these classical turning points, a matter to which we will return shortly.

7.4.2 Next to leading order correction

Let us now turn to the next term in the expansion in !. Retaining terms from
Eq. (7.9) which are of order !, we have

−i!∂2
xσ0 + 2∂xσ0(!/i)∂xσ1 = 0 .

Rearranging this equation, and integrating, we find

∂xσ1 = − ∂2
xσ0

2∂xσ0
= −∂xp

2p
, σ1(x) = −1

2
ln p(x) .

So, to this order of approximation, the wavefunction takes the form,

ψ(x) =
C1√
p(x)

e(i/!)
R

p dx +
C2√
p(x)

e−(i/!)
R

p dx , (7.10)

where C1 and C2 denote constants of integration. To interpret the factors of√
p(x), consider the first term: a wave moving to the right. Since p(x) is real
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(remember we are currently considering the classically allowed region where
E > V (x)), the exponential has modulus unity, and the local probability den-
sity is proportional to 1/p(x), i.e. to 1/v(x), where v(x) denotes the velocity
of the particle. This dependence has a simple physical interpretation: The
probability of finding the particle in any given small interval is proportional
to the time it spends there. Hence it is inversely proportional to its speed.

We turn now to consider the wavefunction in the classically forbidden
region where

p2(x)
2m

= E − V (x) < 0 .

Here p(x) is of course pure imaginary, but the same formal phase solution of the
Schrödinger equation applies provided, again, that the particle is remote from
the classical turning points where E = V (x). In this region, the wavefunction
takes the general form,

ψ(x) =
C ′1√
|p(x)|

e−(1/!)
R
|p| dx +

C ′2√
|p(x)|

e(1/!)
R
|p| dx . (7.11)

This completes our study of the wavefunction in the regions in which the
semi-classical approach can be formally justified. However, to make use of
this approximation, we have to understand how to deal with the regions close
to the classical turning points. Remember in our treatment of the Schrödinger
equation, energy quantization derived from the implementation of boundary
conditions.

7.4.3 Connection formulae, boundary conditions and quanti-
zation rules

Let us assume that we are dealing with a one-dimensional confining potential
where the classically allowed region is unique and spans the interval b ≤ x ≤ a.
Clearly, in the classically forbidden region to the right, x > a, only the first
term in Eq. (7.11) remains convergent and can contribute while, for x < b it
is only the second term that contributes. Moreover, in the classically allowed
region, b ≤ x ≤ a, the wavefunction has the oscillating form (7.10).

But how do we connect the three regions together? To answer this question,
it is necessary to make the assumption that the potential varies sufficiently
smoothly that it is a good approximation to take it to be linear in the vicinity of
the classical turning points. That is to say, we assume that a linear potential is
a sufficiently good approximation out to the point where the short wavelength
(or decay length for tunneling regions) description is adequate. Therefore,
near the classical turning at x = a, we take the potential to be

E − V (x) ( F0(x− a) ,

where F0 denotes the (constant) force. For a strictly linear potential, the
wavefunction can be determined analytically, and takes the form of an Airy
function.7 In particular, it is known that the Airy function to the right of the
classical turning point has the asymptotic form

lim
x&a

ψ(x) =
C

2
√

|p(x)|
e−(1/!)

R x
a |p| dx ,

7For a detailed discussion in the present context, we refer to the text by Landau and
Lifshitz.
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translating to a decay into the classically forbidden region while, to the left,
it has the asymptotic oscillatory solution,

lim
b'x<a

ψ(x) =
C√
|p(x)|

cos
[
1
!

∫ a

x
p dx− π

4

]
≡ C√

|p(x)|
cos

[
π

4
− 1

!

∫ a

x
p dx

]
.

At the second classical turning point at x = b, the same argument gives

lim
b<x'a

ψ(x) =
C ′√
|p(x)|

cos
[
1
!

∫ x

b
p dx− π

4

]
.

For these two expressions to be consistent, we must have C ′ = ±C and
(

1
!

∫ x

b
p dx− π

4

)
−

(
π

4
− 1

!

∫ a

x
p dx

)
= nπ ,

where, for n even, C ′ = C and for n odd, C ′ = −C. Therefore, we have the
condition 1

!
∫ a
b p dx = (n+1/2)π, or when cast in terms of a complete periodic

cycle of the classical motion,
∮

p dx = 2π!(n + 1/2) .

This is just the Bohr-Sommerfeld quantization condition, and n can be
interpreted as the number of nodes of the wavefunction.

! Info. Note that the integrated action,
∮

p dx, represents the area of the clas-
sical path in phase space. This shows that each state is associated with an element
of phase space 2π!. From this, we can deduce the approximate energy splitting be-
tween levels in the semi-classical limit: The change in the integral with energy ∆E

corresponding to one level must be 2π! – one more state and one more node, i.e.
∆E ∂E

∮
p dx = 2π!. Now ∂pE = v, so

∮
∂Ep dx =

∮
dx/v = T , the period of the

orbit. Therefore, ∆E = 2π!/T = !ω: In the semi-classical limit, if a particle emits
one photon and drops to the next level, the frequency of the photon emitted is just
the orbital frequency of the particle.

The WKB wavefunction (solid)
and the exact wavefunction
(dashed) for the n = 0 and
n = 10 states of the quantum
harmonic oscillator.

! Example: For the quantum harmonic oscillator, H = p2

2m + 1
2mω2x2 = E,

the classical momentum is given by

p(x) =

√

2m

(
E − mω2x2

2

)
.

The classical turning points are set by E = mω2x2
0/2, i.e. x0 = ±2E/mω2. Over a

periodic cycle, the classical action is given by
∮

p(x)dx = 2
∫ x0

−x0

dx

√

2m

(
E − mω2x2

2

)
= 2π

E

ω
.

According to the WKB method, the latter must be equated to 2π!(n + 1/2), with
the last term reflecting the two turning points. As a result, we find that the energy
levels are as expected specified by En = (n + 1/2)!ω.

In the WKB approximation, the corresponding wavefunctions are given by

ψ(x) =
C√
p(x)

cos
(

1
!

∫ x

−x0

p(x)dx− π

4

)

=
C√
p(x)

cos
(

2π

4
(n + 1/2) +

1
!

∫ x

0
p(x)dx− π

4

)

=
C√
p(x)

cos

(
nπ

2
+

E

!ω

[
arcsin

(
x

x0

)
+

x

x0

√

1− x2

x2
0

])
,
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for 0 < x < x0 and

ψ(x) =
C

2
√

p(x)
exp

(
− E

!ω

[
x

x0

√
x2

x2
0

− 1− arccosh
(

x

x0

)])
.

for x > a. Note that the failure of the WKB approximation is reflected in the
appearance of discontinuities in the wavefunction at the classical turning points (see
figures). Nevertheless, the wavefunction at high energies provide a strikingly good
approximation to the exact wavefunctions.

! Example: As a second example, let us consider the problem of quantum
tunneling. Suppose that a beam of particles is incident upon a localized potential
barrier, V (x). Further, let us assume that, over a single continuous region of space,
from b to a, the potential rises above the incident energy of the incoming particles
so that, classically, all particles would be reflected. In the quantum system, the
some particles incident from the left may tunnel through the barrier and continue
propagating to the right. We are interested in finding the transmission probability.

From the WKB solution, to the left of the barrier (region 1), we expect a wave-
function of the form

ψ1(x) =
1
√

p
exp

[
i

!

∫ x

b
p dx

]
+ r(E)

1
√

p
exp

[
− i

!

∫ x

b
p dx

]
,

with p(E) =
√

2m(E − V (x)), while, to the right of the barrier (region 3), the wave-
function is given by

ψ3(x) = t(E)
1
√

p
exp

[
i

!

∫ x

a
p dx

]
.

In the barrier region, the wavefunction is given by

ψ2(x) =
C1√
|p(x)|

exp
[
−1

!

∫ x

a
|p| dx

]
+

C2√
|p(x)|

exp
[

1
!

∫ x

a
|p| dx

]
.

Then, applying the continuity condition on the wavefunction and its derivative at the
classical turning points, one obtains the transmissivity,

T (E) ( exp

[
−2

!

∫ b

a
|p| dx

]
.

! Info. For a particle strictly confined to one dimension, the connection formulae
can be understood within a simple picture: The wavefunction “spills over” into the
classically forbidden region, and its twisting there collects an π/4 of phase change.
So, in the lowest state, the total phase change in the classically allowed region need
only be π/2. For the radial equation, assuming that the potential is well behaved
at the origin, the wavefunction goes to zero there. A bound state will still spill over
beyond the classical turning point at r0, say, but clearly there must be a total phase
change of 3π/4 in the allowed region for the lowest state, since there can be no spill
over to negative r. In this case, the general quantization formula will be

1
!

∫ r0

0
p(r) dr = (n + 3/4)π, n = 0, 1, 2, · · · ,

with the series terminating if and when the turning point reaches infinity. In fact,
some potentials, including the Coulomb potential and the centrifugal barrier for % '= 0,
are in fact singular at r = 0. These cases require special treatment.
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